

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 1651-1652

Synthesis of the *Janus integer* pheromone (4R,9Z)-9-octadecen-4-olide^{\pm}

Gowravaram Sabitha,* K. Yadagiri and J. S. Yadav

Organic Division I, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 5 November 2006; revised 13 December 2006; accepted 19 December 2006 Available online 23 December 2006

Abstract—The synthesis of (4R,9Z)-9-octadecen-4-olide 1, the female sex pheromone of Janus integer is reported using a Zipper isomerization reaction as the key step.

© 2006 Published by Elsevier Ltd.

(4R.9Z)-9-Octadecen-4-olide 1, the female sex pheromone of the female currant stem girdler, Janus integer, an occasional pest of red currant in North America, was isolated by Cosse et al.¹ in 2001. Lactone 1 was isolated as a single enantiomer and its absolute configuration was proposed as R by a bioassay of synthetic samples.² Even though, 1 is in great demand in the USA for practical field test, there are not many reports³ on its synthesis. As part of our continuing interest in the synthesis of bioactive natural lactones,² we herein report a synthesis of (4R,9Z)-9-octadecen-4-olide 1 (Fig. 1) from the known epoxide 2^{5} , wherein a zipper isomerization reaction was employed as the key step.

The 2,3-epoxychloride 2 was converted to alkylated chiral acetylenic alcohol 3 in 70% yield as reported in our earlier communications,⁵ in one-pot, by subjecting

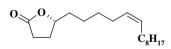
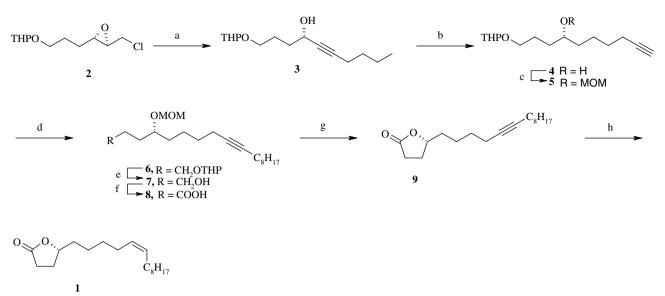


Figure 1. (4R,9Z)-9-Octadecen-4-olide 1.

it to base induced ring opening with Li metal in liquid NH₃ in THF followed by treatment with 1-bromobutane at -78 °C. Next, compound 3 was subjected to a zipper isomerization⁶ by treatment with 1,3-diaminopropane and sodium amide at 60 °C for 6 h to afford the desired terminal alkyne 4^{7a} in 60% yield. The secondary hydroxyl group in $\mathbf{4}$ was protected as its MOM ether using 2.5 equiv of Hunig's base and 2 equiv of MOMCl in dry CH_2Cl_2 at rt. Alkylation of **5** with *n*-butyllithium and 1-bromooctane furnished 6 in 70% yield. THP deprotection of 6 using PPTS in MeOH afforded primary alcohol 7^{7b} which was oxidized to the corresponding acid by a two-step process, firstly to an aldehyde using iodoxybenzoic acid and then perchlorite oxidation using NaClO₂/NaH₂PO₄·2H₂O to the acid 8. Cyclization of 8 was accomplished by reaction with PTSA in MeOH at rt for 12 h to give the cyclized compound 9 in 80% yield. Finally, partial hydrogenation of 9 over Lindlar's catalyst (Pd-CaCO₃/quinoline) in EtOAc at -5 to 0 °C under H₂ at atmospheric pressure provided the target lactone, (4R,9Z)-9-octadecen-4-olide 1^{7c} in 90% yield (Scheme 1).

In conclusion, we have accomplished the synthesis of the female sex pheromone of J. integer, (4R,9Z)-9-octadecen-4-olide 1 in eight steps.


0040-4039/\$ - see front matter © 2006 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2006.12.115

Acknowledgement

K.Y. thanks UGC, New Delhi, for the award of a fellowship.

Keywords: Pheromone; Janus integer; Lactone; Zipper isomerization. *IICT Communication No. 061104.

^{*} Corresponding author. Tel./fax: +91 40 27160512; e-mail: sabitha@ iictnet.org

Scheme 1. Reagents and conditions: (a) (i) Li/Liq NH₃, Fe(NO₃)₃ (catalyst), -78 °C, dry THF, 2 h; (ii) C₄H₉Br, dry THF, 4 h, 70%; (b) NaNH₂, dry 1,3-diaminopropane, 60 °C, 6 h, 60%; (c) MOMCl, Hunig's base, CH₂Cl₂, 0 °C–rt, 2 h, 85%; (d) *n*-BuLi, (1.6 M hexane), C₈H₁₇Br, dry THF, -78 °C 2 h, 70%; (e) PPTS, MeOH, 12 h, rt, 72%; (f) (i) IBX, dry DMSO, dry DCM, rt, 2 h, 80%; (ii) NaClO₂, NaH₂PO₄·2H₂O, aq DMSO, rt, 1 h, 74%; (g) PTSA, MeOH, 12 h, 80%; (h) Lindlar catalyst, H₂, quinoline, EtOAc, 2 h, 90%.

References and notes

- Cosse, A. A.; Bartelt, R. J.; James, D. J.; Petroski, R. J. J. Chem. Ecol. 2001, 27, 1841–1851.
- James, D. G.; Petroski, R. J.; Cosse, A. A.; Zikowski, B. W.; Bartelt, R. J. J. Chem. Ecol. 2003, 29, 2189–2199.
- (a) Shibata, C.; Mori, K. Eur. J. Org. Chem. 2004, 1011– 1083; (b) Mori, K. Eur. J. Org. Chem. 2005, 2040–2044.
- (a) Sabitha, G.; Sudhakar, K.; Mallikarjun Reddy, N.; Rajkumar, M.; Yadav, J. S. *Tetrahedron Lett.* 2005, 46, 6567–6570; (b) Sabitha, G.; Bhikshapathi, M.; Yadav, J. S. *Synth. Commun.*, in press; (c) Sabitha, G.; Sudhakar, K.; Yadav, J. S. *Tetrahedron Lett.* 2006, 47, 8599–8602.
- (a) Sabitha, G.; Venkata Reddy, E.; Giri, K.; Yadav, J. S. Synthesis 2006, 19, 3270–3274; (b) Sabitha, G.; Narjis, F.; Swapna, R.; Yadav, J. S. Synthesis 2006, 17, 2879–2884; (c) Sabitha, G.; Bhaskar, V.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 8179–8181.
- 6. Yadav, J. S.; Chandrasekhar, S.; Rajashaker, K. Synth. Commun. 1995, 25, 4035-4043.
- 7. (a) Spectral data for compound **4**: $[\alpha]_D^{25} 1.5$ (c 1, CHCl₃); IR (neat): 3461, 3316, 2928, 2857, 2215, 1123, 1030 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz): δ 0.81–1.94 (m, 17H), 1.23 (s,

1H), 2.50 (t, 2H, J = 7.1 Hz), 3.28–3.50 (m, 2H), 3.61–3.83 (m, 2H), 4.51 (t, 1H, J = 3.7 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 13.3, 18.2, 19.5, 21.6, 24.3, 25.3, 26.3, 30.2, 30.4, 61.5, 63.1, 66.2, 67.1, 83.1, 98.4; ESIMS: m/z 273 (M⁺+Na).

(b) Spectral data for compound 7: $[\alpha]_D^{25} - 8.5$ (c 1, CHCl₃); IR (neat): 3450, 2925, 2240, 1287, 1126, 1114, 1050 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 0.89 (t, 3H, J = 6.9 Hz), 1.26– 1.63 (m, 22H), 2.06–2.15 (m, 4H), 3.36 (s, 3H), 3.61 (m, 3H), 4.62 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz): δ 14.1, 18.7, 22.6, 24.5, 26.4, 27.2, 27.9, 28.3, 28.9, 29.1, 29.2, 30.6, 31.8, 33.7, 55.5, 62.9, 76.5, 80.4, 95.4, 96.1; ESIMS: m/z 349 (M⁺+Na).

(c) Spectral data for compound 1: $[\alpha]_D^{25} + 23.3$ (c 1, CHCl₃); lit.^{3a} $[\alpha]_D^{25} 24$ (c 0.50, CHCl₃) IR (neat): 2925, 2854, 1777, 1644, 1459, 1351, 1176, 1017, 912, 721 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 0.89 (t, J = 6.8 Hz, 3H), 1.24–1.77 (m, 19H), 1.79–1.90 (m, 1H), 1.95–2.07 (m, 4H), 2.30 (ddt, J = 6.7, 7.5, 13 Hz, 1H), 2.49 (dd, J = 1.5, 7.5 Hz, 1H), 4.44 (quint, J = 6.0 Hz, 1H), 5.31 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz); 14.1, 22.6, 24.7, 26.8, 27.2, 27.9, 28.7, 29.1, 29.2, 29.3, 29.4, 29.7, 31.8, 35.4, 80.9, 129.1, 130.13, 177.1.; ESIMS: m/z 281 (M⁺+1).